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A NEW METHODOLOGY FOR THE NUMERICAL
SIMULATION OF STRAIN SOFTENING
IN INELASTIC SOLIDS

J. C. SIMO

Division of Applied Mechanics
Department of Mechanical Engineering
Stanford University, Stanford, CA 94305

Abstract

This document summarizes the work performed by the author and his associates at Stanford
on a new approach to the analysis and simulation of localization arising in inelastic solids that
exhibit strain-softening response. In addition, the document describes new results pertaining to
the extension of these ideas to the finite deformation regime. Such an extension will be exploited
numerically in follow-up publications. The techniques described below lead to the systematic con-
struction of numerical methods that completely eliminate the strong mesh dependence exhibited
by conventional treatments of the problem.

1. Introduction.

In a recent paper Simo, Oliver & Armero [1993] identified key qualitative features
exhibited by the response of rate-independent inelastic solids in the presence of strain
softening and demonstrated that these features are consistent with solutions possessing a
discontinuous displacement field in the (quasi-static) rate-independent theory. The analy-
sis performed in this reference for the general three-dimensional problem shows that strong
discontinuities (i.e., jumps in the displacement field) are consistent with rate-independent
softening response in the isothermal quasi-static regime, provided that the softening modu-
lus is re-interpreted in o distributional sense. In particular, for linear softening the inverse
of the plastic softening modulus becomes a constant times a delta-function localized at the
discontinuity if the problem is to remain mathematically well-posed. In a subsequent pa-
per, Oliver & Simo [1994] extended the preceding analysis to a widely used class of isotropic
damage models and showed that the same conclusions remain valid. In particular, we have:

i. The distributional re-interpretation of the softening law leads to a compelling re-
interpretation of the softening modulus, related to the fracture energy-released rate
in the solid.
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ii. Displacement solutions in the presence of strain-softening necessarily yield discontin-
wous displacement fields and, therefore, strain fields which exhibit delta-measures.

iii. Any numerical methods suitable for strain localization must be able to reproduce
strain fields with delta-measure. This requirement together with condition i. yield
numerical solutions that exhibit no mesh-dependence whatsoever.

Strong discontinuities are understood in this work in the sense of solutions exhibiting
jumps in the displacement /velocity field across material surfaces (or sets of zero measure).
The displacement gradients on both sides of the surface of discontinuity then differ by a
bounded measure (a delta-function) while the traction vector remains continuous. The
classical example afforded by the slip-lines of rigid plasticity, i.e., bands of zero thickness
and localized plastic deformation. By contrast, solutions exhibiting weak discontinuities
remain continuous, while the displacement gradient (not the displacement itself) experi-
ences a jump across the surface of discontinuity. A typical example is provided by the
weak shocks observed in elastic materials exhibiting phase transitions. In spite of some
confusion in the literature, the numerical analysis issues involved in the simulation of weak
shock are significantly different from those arising in the simulation of strong shocks. The
former case is treated in reference Mamiya & Simo [1994].

A number of numerical techniques have been proposed in an effort to achieve high
resolution of strong discontinuities, the typical example being the discontinuous Galerkin
finite element method. Unfortunately, these techniques are often cumbersome to imple-
ment, rather expensive, and do not fit the framework for developing high resolution schemes
for sharp shock capturing. In Simo, Oliver & Armero [1993] and Simo & Oliver [1994],
we have shown that the Assumed Enhanced Strain (AES) method of Simo & Rifai [1990]
provides an ideal framework for developing high resolution schemes for sharp shock cap-
turing. The AES methodology has been analyzed from a mathematical point of view in
Reddy & Simo [1992] and extended to the finite deformation regime in Simo & Armero
[1992] and Simo, Armero & Taylor [1993]. The underlying idea for the problem at hand is
to replace the strain field by an enhanced strain field designed to replicate delta-functions
within a typical element. The explicit construction is described in detail in Simo & Oliver
[1994] within the context of the infinitesimal theory and below for the full finite deforma-
tion problem. A similar idea also works for the motion of weak shocks in phase transition
problems (see Mamiya & Simo [1994]).

An outline of the rest of this report is as follows. Section 2 generalizes the basic results
described in Simo & Oliver [1994] on the kinematics and balance laws for the problems
with strong discontinuities to the full finite deformation regime. Section 3 presents com-
pletely new results on finite strain plasticity in the presence of strong discontinuities that
generalizes to the finite strain regime the techniques described in Simo, Oliver & Armero
[1993] and summarized above. Finally, Section 4 describes a new finite element method for
the accurate resolution of strong discontinuities that generalizes to the finite strain regime
the technique described in Simo & Oliver [1994]. In sharp contrast with recent approaches,
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see e.g. Larsson, Runesson & Ottosen [1994], in the techniques developed in the course of
this research the shock does not need to coincide with element sides.

As part of the proposed research effort, we have developed new constitutive models
for geomaterials in Simo & Meschke [1993]. In addition, a rather attractive material model
for plane concrete that incorporates anisotropic damage is presented in Govindjee, Kay &
Simo [1994]. Lack of space prevents us to describe in detail these developments. Similarly,
no details will be given on either the mathematical analysis of enhanced strain meth-
ods presented in Reddy & Simo [1992] or the class of assumed enhanced strain methods
described in Simo, Armero & Taylor [1993].

2. Kinematics and Balance Laws in the Presence of shocks.

We summarize below the basic notation employed throughout this work and introduce
a fundamental decomposition of the displacement field into a regular part and a discontin-
uous part. Such a decomposition plays a key role in proposed numerical treatment of the
problem. We conclude this section with the statement of the weak form of the equations
and a rigorous derivation of the local equilibrium equations.

Reference Configuration Q=0 U,

FIGURE 2.1. Material surface S in the domain £, with unit normal IV :
S — S2, and normal paramaterization X =Y + 4N with n € [—h,h]. The
surface S divides both 2 and 2% C £ into two subdomains labeled 24+ and

.Qi C §24, respectively.

2.1. Spatially Discontinuous Motions. Basic Notation.

We denote by £2 C R"¥™ the reference configuration of a continuum body with smooth
boundary 02 and particles labeled by X € £2. The starting point of the analysis of
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solutions exhibiting strain softening is a motion ¢ : 2 x 1 —» R™™ which is assumed to
experienced a jump discontinuity [¢] # O on a smooth material surface S C 2. Here |
denotes the time interval of interest. Since S is a material surface we have S = 0. Points
in S are denoted by Y, with the notation indicated in Figure 1 assumed throughout. For
simplicity we assume that S is smooth, with unit normal vector field denoted by N(Y)so
that

s={y =¥(&,&): (¢, eB}, (2.1a)
where Y : B — £ is a smooth global parametrization. The unit normal field to § is then
given by
| N=N(@E,&) =Y, x¥, /||Y,1 XV |- (2.1b)
A parametrization of S induces in turn a convenient parameterization valid in a neigh-
borhood 2% = S x (=h,h) of S, known as a normal parametrization and defined via the

formula
X(,8,n) =Y (", &) +nN(E &) for —h<n<h (2:2)
The boundary 82" of the set 2" is composed of the surfaces shown in 2.1, so that
gt =shtusturture, (2.3)

where I'* = I'* UT'? is the intérsections of 2% with the outer boundary 02 of 2. Given
an arbitrary function ¥ : 2% x I — R, we let

B(e1, €%, n,8) = H(X (€, €%,m), ). (2:4a)
With a slight abuse in notation, we shall use the same symbol to denote both the function
b and its representatwe 1 defined by (2.4a) in the normal parametnzatlon In addition, we

denote by {G?, G2, N } the basis dual to the curvilinear basis {X 1, X2, N } associated
with the normal parametrization, so that X, -GF = 68 for a, 8 = 1,2. It follows that the

gradient of ¢ can be written as

GRAD[¢)] = GRADs[¢] + [0 /In]| N, (2.4b)
where » -
GRADs[y] := > [ /3E*]G?, (2.4¢)

Clearly, by construction we have IN - GRADs[#)] = 0. Finally, the motion p(X,t) is
subjected to the usual essential and boundary conditions. Explicitly, we assume that on

parts I, C 802 and I'; C I' we have ‘
p=g on I, x| and Pv =t on Iy x|, (2.5)

where g and ¢ are prescribed vector fields on 912, v is the unit outward normal field to 012
and P denotes the nominal stress tensor. We assume that I, UT; = 852 while I, NIy = @.
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2.2 Decomposition of the Spatially Discontinuous Motion

The numerical approach described below relies crucially on a decomposition of the
motion into a regular or smooth part and a discontinuous part. The regular part in-such
a decomposition is assumed to obey the same essential boundary conditions (2.5); as the

motion. Accordingly, we set

o(X,0) = @(X,t) +Ms(X)[P)(Y,t), for (X,t)e2xl. (2.6)
Nt e’ ~ ~— -
Regular Part Discontinous Part

Here, [¢](Y,t) is the jump experience by ¢ across S defined in the usual fashion, see
e.g., Truesdell & Toupin [1960], and M : 0* — R is a prescribed function subject to the

following two conditions:

i. The jump across S is [Ms] = 1.
ii. The support of Mg is supp[Ms} = 2" with Ms =0 on Si.

A convenient expression for the function M is obtained by means of the following con-
struction. Relative to a normal parametrization X =Y + n N we set

1 ifn>0,

Ms(X)=Hs(n) — 1/;"(X) where Hgs(n) = {0 <0, (2.7)

is the Heaviside function. The function 1" is smooth and completely arbitrary, except for

the following two requirements:
HH(X)=0for X € 2_\2" and $*(X)=1 for X € 2,\2}. (2.8)

The properties of the Heaviside function imply that condition i holds for Ms defined by
(2.7), while restriction (2.8) ensures that condition ii also holds.

REMARK 2.1. For the case ngim = 1 S collapses to a point, say z = ¢, and definition (2.7)
reduces to Ms(n) = H({ +n) — (€ + ). The restriction (2.8) on ¥" merely becomes

ph(E+n) =0 for n<—h and Y*(E+n)=1 for n>h. (29)
‘The derivative of Mg is obviously given by M4(n) = 8¢(¢ +n) — ™ (€ +n). |

For subsequent use, we recall that GRAD[Hs] = és N for ngim > 1, where bs 1is
the Dirac delta measure on the surface S. Using this elementary result in the theory of
distributions, the derivative of the function Mg takes the form

GRAD[M;s] = 65 N — GRAD[3"]. (2.10)
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We remark that the smoothness restriction on the regular part @ of the motion is intro-
duced only for simplicity. Continuity of @ is all that is required for the arguments below

to remain valid.

' 2.3 The Weak and Local Form of the Equilibrium Equations

Again for simplicity, attention will be restricted in the developments below to the
quasi-static problem under the assumption of small deformations. Our goal is a careful
statement of the local equations of equilibrium for the problem at hand. Our point of
departure is the weak form of the equations as defined by the classical principle of virtual

work, i.e.,

/P:GRAD[n}d.(Z—_—/ f-nd!2+/ t-ndl, (2.11)
2 2 T

for all admissible test functions (virtual displacements) n € V, where f stands for the
prescribed body force. Consistent with the form (2.6) adopted for the displacement field,
the space V of admissible variations is defined by

V= {17 =f+MsB: 7 L= 0 and (B:5 — R™m is arbitrary} , (2.12)

u

where the regular part 77 of 7 € V is smooth. We have the following result.

LEMMA 2.1. The weak form (2.11) along with (2.12) yield the local equilibrium equation

DIV[P]+ f=0 in M\S x|
(2.13a)
Pv=t on Iixl ,
supplemented with the following two conditions:
[PN]=[P+ —P_]N=0 and PsN=PFP,N. (2.13b)

Here Ps N denotes the traction vector acting on the surface S.

Proof: We proceed in two steps. (i) First, choose regular test functions with 8 = 0, so
that GRAD[n] = GRAD[#] with 7] arbitrary. Integration by parts then yields

/P:GRAD[n]d{2=—-/ i} - DIV[P] df2
2 2

+/817-(][P]]N)- dS+/F n-(PN)Ydl.  (2.14)

t

By inserting (2.14) into (2.11) a standard argument yields (2.13a) and (2.13b);.
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(ii) Second, choose test functions with the regular part 7 = 0 and function Ms defined
by (2.7). From.(2.10) we have

GRAD[n] = —B ® GRAD[¢"] + Ms + 658 ® N + GRAD;[S], (2.15)

where GRADs[B] = Zd:ln_l B,oa ®G®, see (2.4). The contribution of the first term in
(2.15) to the weak form (2.11) is evaluated as follows. Integration by parts along with the
local equilibrium equation (2.13a); gives

P : (B ® GRAD[*])d02 = / pIv[y* PB]ds2
o Jo

_ [ 4*[8-DIvV[P] + P : GrADS[B]] d2
2k

= zﬁ",@-PNdS—/ Y*B3.- PN dS
S.

S+

[ twes
s .

+/ " [f - B — P : GRADs[B]] df2. (2.16)
Qh

Use of the boundary conditions ¥* =1 on Si and ¢ = 0 on S, together with the jump
condition (2.13b), and expression (2.7) for M, yields

/ P : (8 ®GRAD[Y"])dN2 = / B-PNdS - / [f -8B — P :GRADs[B]) Ms df?
ok S nh
+ /ﬂ [f -8B — P:GRADs[8]] df2. (2.17)

h

+
Inserting (2.15) into the weak form (2.11) of the equilibrium equations and making use of
(2.17) gives the following result:

/ﬁ-PgNdS— ,B-PNdS—/ (f-B—P:GRADs[B]] d2 =0, . (2.18)
s st 2%

for any B : S — R™¥™, The last step in the proof involves the evaluation of the integral
involving the term P : GRADs[8] = B, -Pg®. Since in a normal parametrization 2t =

- § x [0, h], using integration by parts and the assumption that the lateral boundary I'* =

I’_ﬁ U I'* is traction free it is easily shown that

P : GRADs[B]df2 = — B - DIv[P]dSf2 + / B-(PN),, dSdn. (2.19)
ah ’ 2 5x[0,h]
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Inserting the local equilibrium equation (2.13a); into (2.19) yields
—/ [f -8B — P :GrADs[B]] d.Q=/ ﬂ-(PN)dS—-/ﬂ-(P_,.N)dS. (2.20)
. nk Sh S
+ +

By combining (2.20) and (2.18) we conclude that the weak form of the equilibrium equa-

tions finally reduces to
/ B.[PsN — P,N]dS, VB:8— R, (2.21)
s

A standard argument then yields result (2.13b),. . |

REMARK 2.2. Results (2.13a) and (2.13b); are classical for problems exhibiting discon-
tinuities. Result (2.13b),, on the other hand, is non-conventional and arises from the
decompositioﬁ (2.6) of the displacement field. The different physical significance of these
two conditions becomes clear if we replace the shock S by the neighborhood 2" with finite
thickness h. Condition (2.13b); then becomes a restatement of continuity of the traction
vector across the material shock S, in the sense that the traction vectors on S_’f_ and S*
coincide, while condition (2.13b); is the assertion that traction vector on the shock itself

S equals the traction vector on S _’,’_ ahead the shock. H

3 Finite Plasticity in the Presence of Softening

Classical rate independent models of plasticity lead to ill-posed initial boundary value
problems in the presence of strain-softening (as opposed to strain-hardening) response.
This lack of well-posedness manifests itself in a computational setting in a strong-mesh
dependence of the numerical solution. Within the scope of the infinitesimal theory, it was
shown in Simo, Oliver & Armero [1993] that well-posedness in strain-softening models of
rate-independent plasticity is restored if the hardening law is reinterpreted in a distribu-
tional sense. Moreover, this reformulation of the Hardening law lends itself to a compelling
physical interpretation. The goal of this section is to generalize these results to the full

finite deformation theory.

3.1 Deformation Gradients and Spatial Rates of Deformation

The first step in the analysis is to compute the deformation gradient and the associated
rates of deformation tensors for a discontinuous motion of the form (2.6). For convenience,
Mg is assumed to be given by (2.7). ‘Accordingly, setting

F := GrAD[@] + MsGRADs [[¢]] — [] ® GRAD[Y"], (3
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and recalling that GRAD[Hs] = 6sIN, the deformation gradient F' := GRAD[g] can be

written as

F=F+6és[¢]®N in £2xL. (3.2a)
Alternatively, by defining the material jump J as

J = F1[y], - (33)

expression (3.2) for the deformation gradient can be written in the following entirely equiv-

alent form:

F =FF* where F*:=1+6sJ®N. (3.2b)
This kinematic decomposition, which arises in the present context without any a-priori
kinematic assumption, is formally identical to the multiplicative decomposition F' = F*F?
of the deformation gradient postulated at the outset in certain formulations of plasticity,
see e.g., Lee [1969], Mandel [1974] and Simo [1992, 1994] among others. For the problem
at hand, the elastic part is F* = F while the plastic part becomes F? = F*. In order to
circumvent technical difficulties, the following additional hypothesis is introduced.

ASSUMPTION 3.1. The unit vector N normal to the material discontinuity S is orthogonal
to the material jump J, so that the following equivalent conditions are assumed to hold:

N-J=0 < n-[¢]=0 where n:=FTN. (34)

It follows from (3.4), that m can by interpreted as the vector normal to the surface é(S)
in the current configuration of the solid. |

Expressed in physical terms, condition (3.4) asserts that only slips (i.e., jumps [l
which are tangential to S) are allowed. Under such a restriction, the inverse of the defor-

mation gradient F™* takes the simple form
F*1=1-6sJ®N; (3.5)
a result which is immediately verified by a direct computation.

REMARK 3.1. If the normal n to $(S) is not orthogonal to the jump [¢], it is easily verified
that expression (3.5) remains formally valid, provided that the delta measure §s replaced
by the factor [1 — 5[] - n]6s. ]

The next step is to compute the spatial velocity gradients ! := GRAD[@]F —1 and
I := GRAD[@]F ! associated with the motions ¢ and &, respectively. A straightforward -
manipulation then yields the following standard expressions in continuum mechanics:

I=FF and = FF1. (3.6)
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~ According to the preceding interpretation, we can view ! and I as the total and the elastic
spatial velocity gradients, respectively. The following result determines the plastic velocity

gradient.

LEMMA 3.1. The local velocity gradient 1* associated with the part F'* of the deformation

gradient obeys the additive decomposition

Il=1+1* with I*:=6s(Lp[e]) ®n, (3.7a)
and 5 _
Ly [[(p]l = -—g:;]]- ~If¢] where @:= %% op~! ‘ (3.7b)

is the Lie derivative relative to the spatial velocity field .

PROOF. Time differentiation of the relation F' = FF* yield, after post-multiplication by.

F~1, the result
OF*
ot

Now, time differentiation of expression (3.2b), and use of result (3.5) yields

1=1+F[L*]F™' where L*:= F* 1L (3.8)

L =6t N|[1-6sJ@N)=6sJ @ N, (3.9)

since N - J = 0 by assumption (3.4). Therefore, we have
FILF =8s(FJ)@n=és Lyle] @ n. (3.10)
and the result follows by inserting (3.10) into (3.8). n

REMARK 3.2. A standard result in continuum mechanics shows that the Lie derivative
Lg[¢] is objective. Since the normal n is also objective, it follows that the full spatial

velocity gradient gradient I* is objective in the standard sense, i.e.,
' =Qu*QT if z— 2t =7+ Qx, (3.11)

for arbitrary translations » € R® and arbitrary rotations @ € SO(3). On the other
hand, only the symmetric parts d := sym[l] and d := sym([l] —the so-called spatial rate
of deformation tensors— are objéctive. An identical result holds for finite deformation
multiplicative plasticity, see Simo [1994]. We shall denote by w := skew[l], © = skew[l]

and w* = skew[l*] the spin tensors. [}
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3.2 Analysis of Discontinuous Solutions. Localization Conditions

Consider next a conventional model of classical rate-independent plasticity with isotropic

hardening/softening law expressed in rate form via the following constitutive equations:

F=c[l-1]
I? = X0r¢(7,9)

. (3.12)
& = A0,9(7,q)
A>0, ¢(7,9) <0and Ag(7,q)=0.
Here 7 := PF~T is the Kirchhoff stress tensor and ¥ = + — wT + Tw its Jaumann

derivative, ¢(7,q) := 5(1‘) + ¢ — oy is the yield criterion and oy > 0 is the flow stress. We
assume that @(-) is convex function, homogeneous of degree one. In addition, the spatial
elasticity tensor c is assumed to possesses the usual symmetry conditions and remains
positive definite, in the sense that 7 - clr > ﬂ0||1’||2 with By > 0 and arbitrary T = 7T,
To illustrate the key results, it suffices to consider the simplest model of softening plasticity
in which :

a=-H1q with H = constant <O0. (3.13)

 The case H > 0 corresponds to hardening plasticity. Observe that the flow rule (3.12),

implies that the plastic spin w? = O since Or ¢ is symmetric.

REMARK 3.3. The preceding model can be shown to arise as the rate form of multiplicative

multiplicative plasticity, with
¢ = FeFe' and IP := FCLPF*™', where L? =F?PFP7L. (3.14)

The Kirchhoff stress tensor is defined in terms of a stored energy function W(C*¢) via the
hyperelastic constitutive equation

7= F° [20:W(C®)| F*T where C°=FTF°. ~ (3.15)

The spatial elastic moduli ¢ are given by the standard relation

e e Te e >PwW
Cijkl =FiIFjJFkKFILW' (316)

Finally, the local plastic dissipation D predicted by model, defined as he local stress power
minus the rate of change of the internal energy, equals the flow stress times the plastic
slip, i.e.,

D= MAry >0, since A >0. ‘ (3.17).
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A detailed proof of the preceding results is given in Simo [1994]. ]

The goal of the analysis below is to identify the conditions that render the constitutive
model (3.12) with the softening law (3.13) mathematically consistent with expression (3.7a)
for the spatial velocity gradient I, which involves a delta—measure. We proceed in two steps.

i. First, by inserting (3.7a,b) into into the rate constitutive equations (3.12) one

arrives at the following expression
¢ ¥ — T = éssym [Lpe] ® n] — A- 6. (3.18)

Now, the left-hand-side of this equation is a piecewise smooth function since [ is piecewise
smooth and the stress field T can experience at most jump discontinuities (i.e., T is of
bounded oscillation). The right-hand-side of this equation, on the other hand, exhibits
a term involving a é-measure. Since both factor multiplying és is a smooth function
defined on S and the term Or¢ are piecewise smooth, equation (3.18) can make sense
mathematically only if the plastic multiplier X itself is a distribution of the form

+X6s where M:S—R (3.19)

>l

A=

is smooth and non-negative and corresponds to localized plastic deformation on the surface
S. The function ) : 2 — R is a piecewise smooth and non-negative and corresponds to
diffuse yielding in the solid. Relations (3.18) and (3.19) then imply that

sym[Lglp] @ n] = 30,4 on S x|, (3.20)

We shall refer to this result as the localization condition. Without loss of generality, in
what follows it will be assumed that A = 0 (localized plastic deformation) so that (3.18)
reduces to
Y=cl in 27\ x1 and X\=Mds. (3.21)
In other words, the region §2\S remains elastic, in agreement with the simplifying assﬁmp—
tion that X = 0.
ii. By inserting the softening law (3.13) into the evolution equation (3.12); for the

softening parameter «, noting that 9,6 = 1 and using expression (3.19), one obtains
H7l§=—6&=—Ns. (3.22)

Now, the stress-like hardening variable ¢ must remain a piecewise smooth function if the
yield criterion ¢(T,¢) < 0 is to retain its classical interpretation. It follows that the
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preceding relation can remain mathematically meaningful only if the softening modulus
itself is a distribution, i.e.,

H 1 =H 165 where H = constant < 0. (3.23)

This result is amenable to a compelling physical interpretation which relates H to the
fracture energy of the material, see Simo, Oliver & Armero [1993]. A similar interpretation
holds for damage models (Oliver & Simo [1994]). '

The localization condition (3.20) can be cast into the following equivalent form

LEMMA 3.2. Let Q¥ denote the perfectly plastic spatial acoustic tensor evaluated on the
surface S via the conventional expression

e ._ c0r¢ ® cd-¢

s ‘=N C—m sn (fOI‘ /\>0) (324)

Then the localization condition (3.20) is equivalent to the requirement
Q7 Lylel =0 — KerlQZ]# 0. ‘ (3.25)

which holds in and only if the condition det[QT] = 0 holds.

PROOF. Multiplying both sides of (3.20) by ¢0-¢ and contracting the result with 0,¢
yields the following expression for the multiplier: py

1

A= 0r¢:¢cor ¢ o

¢ : c[Lg[e] ® n). (3.26)
By applying the tensor ¢ to both sides of the localization condition (3.20) and the result
to the normal n one obtains '

[nen]Lgle] —A[cd-¢]n=0 (3.27)
Inserting (3.26) into (3.27) and rearranging terms yields (3.25) and hence the result. N

It is worth pointing out that the localization condition (3.25) in terms of the acoustic
tensor does not involve the softening parameter . This is in sharp contrast with similar
conditions derived in the literature by means of the Thomas-Hill-Mandel analysis of weak
discontinuities (acceleration waves), see e.g. Needleman & Tvergard [1992]. An identical
condition holds, therefore, for the perfectly plastic case corresponding to H=0.
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3.3 The Limiting Problem: Plastic Flow on the Slip Surface §

By virtue of Assumption 3.1, $(S) is a slip surface since [¢] - n = 0. Our goal below
is to identify the reduced problem that governs plastic flow on the slip surface S. To do
so observe first that S is a material surface and, therefore, N = 0. As a result, since
n = F-TN, it follows that Lgn = 0. Time differentiation of the slip condition then

yields the additional relation
0=~ (IM! n) = Lg[p] -n+[¢]-Lon = Lgle] -n=0. (3-28a)

Now let {¢1,t2,m} denote the convected basis at y = #(S), so that t, = =F Y,o, is a normal
parametrization of S. Since $(S) is convected by the flow of % it follows that

to, - n=0 for a=12. (3.28b)

The localization condition (3.20) together with (3.28a,b) then yield the following results.
i. By contracting both sides of (3.20) with n ® n and ¢, ® 3, a, B = 1,2 one obtains

n-[0,¢jn=0 and &, [0-¢]tp=0 for a,f=1,2, (3.29a)

while, in general, ,
=ty [0r¢m#0 for a =12 (3.29b)

Observe that for J,—flow theory 8;¢ = dev[r], where dev[r] stands for the (Kirchhoff)
stress deviator. Therefore, for J,—flow theory conditions (3.29a,b) assert that the only non—
zero stresses on a slip-surface are the resolved shears 7. Motivated by this interpretation,
in the general case we shall refer to 7o defined by (3.29b) as the generalized resolved shears.

ii. Since § is material and t, are convected by @(S), it follows that
d
= (I#]-ta) = Lole] - ta since Lyt =0. (3.30)

Therefore, by contracting both sides of (3.20) with n ® o, o = 1,2 and using results
(3.28a,b) together with (3.30) one obtains

d .
= (l#]-ta) = Lole) - ta = 2T, @=12." (3.31)

It is clear that £, = [¢] - to represent the components of the plastic slip taking place on
the surface S. Moreover, since ngS(’r) is homogeneous of degree one, the yield criterion on

S can be written as

&(,9)ls = ¢s(Ta, @) 1= /8 + 73 — [Ha+ 7v] 0. (3.32)
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As a result, the evolution equations (3.12)3 3.4 collapse to the following problem posed on

the slip surface S: )
o = 2) 74 }

a=A
A>0, ds(a,a) <0and X ds(7a,a) =0.

It is interesting to observe that this problem is the mathematical transcription of the
classical Schmidt law, which asserts that plastic flow on a slip surface is proportional
to the resolved shear stress for Jo—flow theory. See Asaro [1983] for a micromechanical

(3.33)

motivation of Schmidt law.

REMARK 3.4. The numerical implementation of the distributional character of the hard-
ening law can be achieved in two alternative ways. First one can work directly with the
standard problem (3.12) or, equivalently, with the model of multiplicative plasticity de-
scribed Remark 3.3. Effective numerical algorithms for the latter form of the model are
described in Simo [1992]. The distributional character of the softening law is incorporated
into the algorithm by replacing the delta function s in the softening law (3.13) with a
delta-sequence, as described in the next section. Alternatively, one can work directly with
the limiting problem (3.33) thus by-passing the use of é—sequences. Both approaches yield
excellent results which are totally mesh independent. The former approach, however, has
the advantage of involving only a trivial modification of existing algorithms. |

4 A New Finite Element Method for Localization

The boundary value problem to be solved numerically consists of the weak form (2.11)
of the equilibrium equations, with test functions lying in the space V defined by (2.12),
supplemented by the constitutive model described above. A key condition to be satisfied
by the spatial discretization emanates from the analysis and conclusions summarized in
the preceding section, if the features exhibited by the continuum solution are to be ac-
curately reproduced by the numerics. The discretization must be able to replicate strain
fields that exhibit bounded measures (i.e., delta functions) in order to capture both the
localized plastic deformation and the distributional character of the softening law that
render mesh-insensitive numerical solutions. It is well-known that he standard Galerkin
finite element method cannot meet such a condition, thus leading to overly diffused re-
sults that exhibit a strong mesh dependence. The technique described below falls within
the class of Assumed Enhanced Strain (AES) methods proposed in Simo & Rifai [1990]
and subsequenty generalized to the finite deformation regime in Simo & Armero [1992]
and Simo, Armero & Taylor [1993]. Within this framework, the preceding requirement is
achieved via a particular local enrichment of the deformation field.
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(A) Boundary 9Q" = TRUIUSBUS!E  (B) Element with Regularization Band Q¥

FIGURE 4.1. (A) Finite Element discretization. Definition of the subdomain
2% with boundary 802%. (B) A typical element, with constant normal IV,
to the element shock S? and local domain 2% involved in the construction

delta-sequences.

4.1 A Class of Assumed Enhdnced Strain Methods

Consider a standard finite element discretization {2 = Uleﬁe of the domain 2 with
characteristic mesh-size h > 0, as shown in Figure 4.1. We introduce at the outset the
decomposition (2.6) of the displacement field, with associated test functions lying in the
space V defined by (2.12). For convenience, we shall denote by V the space spanned by
the regular part 7j of the test functions n = 77 + MsBeV.

The key idea in the method described below is to work directly in terms of the regular
part of the displacement field and the admissible test functions, which are amenable to
a conventional C°-finite element approximation V* C V. For the sake of concreteness,
consider an approximation via constant strain triangles of tetrahedra, i.e,

—h

o=t e lco(@Pen - gk € P2 and L=0p @D

The singular (distributional) character of the strain field in the continuum problem is
captured within the proposed numerical approach via a local enhancement at the element

level; i.e., by considering enhanced deformation gradients F* with associated variations
denoted by G* of the form

F! = GraD[g"|+ F! and G'=crap[@’]+ G! . (4.2)
N’ ~ N, e ~~
Galerkin Enhanced Galerkin Enhanced

We denote by £ the finite element spaces of enhanced strains F" and let ff; be the cor-
responding weighting space of admissible variations. In general we may have EF 5,’7‘,
a situation reminiscent of the so—called Petrov—Galerkin formulations. A key additional
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condition placed on both 52 and 5.:,’; is that the finite element approximations be discon-
tinuous between elements. Within this context, the appropriate variational formulation of

the discretized finite element problem is given by the following system:

/ pt :GRAD['F]h]dQ=/ f-ﬁ"dQ-{—/ t-a*dl, viq* e V*,
04 0 T:

o (43)

P":G'd =0, VG"€&! and e=1,2,---,E.
2.

The nominal stress field P*" in (4.3) is computed via the specific constitutive model under
consideration, ‘but evaluated with the enhanced strain field defined by (4.2);. The design
of the weighting space &7 S is restricted by the following key conditions set forth in Simo &
Armero [1992], which ensure stability and consistency of the of the AES method.

i. Consistency: For the linear interpolations (4.1), strains in gg‘ must have zero element
mean, i.e., [ G" d2 =0 for all G* € £2.

ii. Stability: The space GRAD[V?] of strains associated with test functions in V* and the
space é,’; must have null intersection; i.e, GRAD[V*] N 5,’; = 0.

For a convergence proof restricted to linear problems see Reddy & Simo [1992].

4.2 Design of the Enhanced Strain Fields

To describe the proposed construction, it is convenient to suppose for the moment
that the material surface S is given. Furthermore, for simplicity we restrict our subsequent -
developments to the case ngim = 2. The case ngm = 1 is described in detail in Simo, Oliver
& Armero [1993]. Consistent with the linear interpolation in (4.1), we assume that the
approximation S? to S is a polygonal line, with vertices lying on the sides of the triangular
elements, which intersect an element §2. along the segment S, k with constant unit normal
N,. Let J denote the set of numbers associated with elements that intersect S*, i.e.,

Ji={e€{1,2,..,E}: 2.n5" #0}. (4.4)

Now let N be the global node numbers associated with the elements §2. intersecting Sh;
ie., such that e € J. We set N = N; UN_, where Ny (respectively N_) are the global
node numbers in N associated with nodes lymg ahead of (behind of ) the shock §". k. Clearly,
the polygonal lines with nodal points associated with the sets N= define approximations
(also denoted by S%) to the lines S introduced in Section 2, see Figure 2. With this

notation at hand we proceed as follows.

(A) Construction of the space £k, Assuming that the jump [¢] in the motion is
constant within a typical element (2., e € J, and in view of the decomposition (2.6) for
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1/Q,,

Assumed Function
M Se for 2D

FIGURE 4.2. Restriction of the function Mg to a typical element {2,

the displacement field, it is natural to adopt the following approximation for the enhanced

strain field:
Eh .= {I«”’h € LX) x [LE(@)) : FP = . ® GRAD[ME ] with a. € Rz}. (4.5)

Here o, are element parameters, which are suppose to replicate the jump within the
element. In addition, M ge is the restriction to the element 2. of an approximation to
the function Mg that satisfies the two conditions i and ii set forth in Section 2.2 and is
constructed as follows. |

For a typical element §2, withe € J, S k intersect two sides of {2, with common node
which will be denoted in what follows by X?. Let N denote the element shape function
associated with this node. Denoting by k. > 0 the distance from X to the opposite side,

with unit outward normal M, (see Figure 4.1), we have
NXX):=1—-(X - X2)- M, / he with |M.|=1. (4.6)

The function M2 is then obtained as the assembly of local element functions Ms, defined

as (see Figure 4.1)

Ms, := Hs, — N} where Hs (X):= {(1) ﬁ‘i g ge;’ (4.7

Here £2., and £2._ are the regions within the element ahead and behind of the shock. This
definition clearly ensures that [Ms] = 1 (condition i) while vanishing outside of the region
region 2% limited by the polygonals S% and the boundary of the body (condition ii). The
gradient of the function Mg, is given by the expression

GRAD[Ms,| := b5, N — —}%- M., (4.8)
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Delta line Og

FIGURE 4.3. Illustration of the gradient GRAD[M] for a typical element (2.

which is illustrated in Figure 4.3.

REMARK 4.1. In the actual implementation of (4.7) the H-function Hs, is replaced by an
H-sequence. Such a sequence is constructed by replacing the straight segment St with a
narrow band of thickness k denoted by £2F. The derivative of the function M, regularized
in such a way, which is denoted by M §e , is given by (see Figure 4.4)

GRAD[ME | := 65. N, — : M, where 6% = {1/k if X G..Qf, (4.9)
o k 0 otherwise .

Observe that M, = N, only if the shock S} is aligned with the mesh. The regularization
parameter k > 0 is unrelated to the characteristic mesh size parameter h and is chosen as
small as possible for fized, finite h, within the limitations imposed by machine precision.
Within this context, enforcement of the distributional character of the hardening law
becomes trivial: The delta-sequence (4.9); induces the corresponding delta-sequence for
the (inverse of the) softening modulus '

_ . X

HE(X) = {W ifXefl, (4.10)
oo  otherwise .

The value HE(X) = oo for X ¢ 2% is consistent with elastic behavior outside the local-

ization band. This approach is totally unrelated to the so-called characteristic length, an

ad-hoc concept widely used in smeared crack models, see e.g., Hilerborg [1985], Bazant
[1986] and Oliver [1989] for the best available version. [

The proposed assumed enhanced strain approach is clearly strain driven and fits,
therefore, the usual framework of constitutive integration algorithms (see Simo [1992] for
a comprehensive review). In particular, for the models described in the preceding Section,
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Line delta function ,

Regularized ]
delta-sequence
Integration point
X;e QX
Integration point
X, eQ¥

FIGURE 4.4. Hllustration of the regularized gradient GRAD[M é‘e] within a
typical element £2..

the standard return mapping algorithms remain unchanged; the only modification needed
is the replacement of the softening modulus with the sequence (4.10).

(B) Construction of the weighting space g,’; The choice adopted below is motivated
by the proof of part.(ii) in Lemma 2.1, where condition (2.13b), is obtained essentially by
considering in the weak form (2.11) the continuum counterpart of the enhanced variations
G* appearing in (4.2)2. Relative to a normal parametrization X, = Y, + nIV,, where Y,
is on the segment S* and —k < < k, we set |

Eh = {c’:he[z;?(rz)] x [LA(Q)f : Gt = [6k, — v*] (ﬁe®Ne),aeeR2}. (4.11)

The function ¢* () arbitrary although restricted by the condition b ()| g=k—0* () |n==k =
1 which ensures satisfaction of the stability condition on S ¢k Observe carefully that
& €k o £k except in the case M, = IN, where the shock is ahgned with one triangle side.
The ultimate justification for (4.11) lies on the following result which furnishes the finite

element counterpart of relation (2.13),:

Gh:P"d2 =0 YG"c & « P}N.=P¢N.. (4.12)
2. .

Here Ps is the stress on the band 2% and P! is the stress on the region [{2, \ 251N 2.4
ahead of the shock. The proof of this relation is straightforward and follows from the fact
that P® is piecewise constant. Observe that the jump condition [P*]N. = 0 is proved
" exactly as in Lemma 2.1. Finally, from definition (4.11) it is immediate to verify the
EZ‘ NGRAD[V?] = @. Hence, gf/‘ defined by (4.11) satisfies the consistency and the stability
requirements for AES methods.
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4.3. A Representative Numerical Simulation.

To illustrate the preceding methodology we consider the isotropic damage model de-
scribed in Oliver & Simo [1994] in an uni-axial tension test. It can be shown (see the
preceding reference) that the localization condition determines the angle J between the
normal N and the loading direction e as 9 = /v, where v is the Poisson’s ratio. A typical
numerical result for v = 0.4 is shown in Figure 4.5 for a completely non-structured finite
element mesh. The computed deformed shape of the specimen, shown in Figure 4.5, shows
that the entire deformation takes place in the band of elements intersecting a straight line
at m/2 + 9, as expected. Outside the band the deformation is elastic and, therefore, the
specimen behaves nearly as two rigid solids sliding with respect to each other. The load
displacement curve, not shown in the figure, exhibits absolutely no mesh dependence.

(A)

cmoscesed

(B)

FIGURE 4.5. Uniaxial tension test for an isotropic damage model. (A) Non-
structured finite element mesh and computed domain £ k containing the shock
S*. (B) Computed deformed shape exhibiting the strong localization.
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